Inflection Points in the Coordination Number around Ce^{3+} and CeF^{2+} in a Mixed System of Methanol and Water

Makoto Arisaka, Naoko Takuwa, and Hideo Suganuma*

Radiochemistry Research Laboratory, Faculty of Science, Shizuoka University, 836 Ooya, Shizuoka 422-8529

(Received April 26, 1999)

The stability constants ($\beta_{1(\Gamma)}$) of the monofluoro complex of Ce(III) and those ($\beta_{1(CI)}$) of the monochloride solvent-shared ion-pair of Ce(III) have been determined in mixed solvents of methanol and water at 0.10 and 1.00 mol dm⁻³ ionic strengths, respectively. The variation in the Ce³⁺–Cl⁻ distance, which was calculated using the Born-type equation and the Gibbs' free energy derived from $\beta_{1(CI)}$, indicated a change in the coordination number (CN) of Ce³⁺ from CN = 9 to a mixture of CN = 9 and 8 in the vicinity of the mole fraction of methanol (X_s) = 0.23. The variation in Ω in Ω in the mixed-solvent system showed an acute-angled convex inflection point at Ω and an acute-angled concave inflection point in the vicinity of Ω in the vicinity of Ω in the vicinity of Ω in the same change in the Ω of Ce³⁺ from Ω in Ω in

Knowledge about the properties of solvated ions is of fundamental importance in order to understand the chemical behavior of ions in solutions. Kanno and Hiraishi¹ have determined the hydration number in the primary hydration sphere of tripositive lanthanoid ions (Ln^{3+}) using Raman spectroscopic analysis. They showed that the hydration number of Ce^{3+} was 9. Fourest et al.² showed La^{3+} and Pr^{3+} at the position of hydration number 9 on an S-shaped variation curve of the primary hydration number for some Ln^{3+} and tripositive actinoid ions (An^{3+}) against their crystallographic radii, but did not show the position of Ce^{3+} . The radius of Ce^{3+} (119.6 pm) of coordination number (CN) 9 is intermediate between those of La^{3+} (121.6 pm) and Pr^{3+} (117.9 pm) of CN = 9; therefore, it is probable that the position of Ce^{3+} on the S-shaped curve is between La^{3+} and Pr^{3+} .

Methanol is bulkier than water. Hence, it is expected that the solvation number of the primary solvation sphere of Ce³⁺ decreases from CN = 9 to a lower CN when the mole fraction of CH₃OH (X_s) in the mixed CH₃OH+H₂O solution increases. Suganuma et al. examined the variation in the solvation number of the primary solvation sphere of Eu³⁺ in a mixed CH₃OH+H₂O solution.⁴ The variation was determined on the basis of the variation in the stability constant of EuF²⁺, forming a contact ion-pair with increasing X_s . The X_s value (= 0.03) of the inflection point for the variation from a mixture of CN = 9 and 8 to CN = 8 on the solvation number around Eu³⁺ was determined by the variation in the sum of (1) the cation solvation effect $(-\Delta g/RT)$ employed by us⁵ and (2) the electrostatic attraction between Eu³⁺ and F⁻ in H_2O and mixed $CH_3OH + H_2O$ solvent solutions $(\Delta g_v/RT)$. Suganuma et al. also examined the variation in the solvation number of the primary solvation sphere of Eu³⁺ in a mixed CH₃OH+H₂O solution based on another concept.⁶

This was on the basis of the variation in the Eu³⁺–Cl⁻ distance ($d_{\text{Eu-Cl}}$). The $d_{\text{Eu-Cl}}$ in a mixed solvent system was estimated using the Born-type equation^{7–11} and the Gibbs' free energy derived from the stability constant of EuCl²⁺, forming a solvent-shared ion-pair. The inflection point for the variation in $d_{\text{Eu-Cl}}$ was $X_s = 0.014$. The X_s value (= 0.03) of the inflection point obtained from the contact ion-pair in a solution of 0.10 M (1 M = 1 mol dm⁻³) ionic strength was in fairly good agreement with that (= 0.014) from the solvent-shared ion-pair in a solution of 1.00 M ionic strength.

From the presumed position for Ce³⁺ on the S-shaped variation curve² of the primary hydration number, it is expected that the variation in the solvation number around Ce³⁺ from 9 to a mixture of 9 and 8 may occur at a higher X_s than the X_s , which was shown in the variation in the solvation number around Nd³⁺ in the same variation manner.¹² This implies that the inflection point in the solvation number around Ce³⁺ from CN = 9 to a mixture of CN = 9 and 8 may be proved from the variations in the stability constant of CeF^{2+} ($\beta_{1(F)}$) and the stability constant of $CeCl^{2+}$ ($\beta_{1(Cl)}$) with increasing X_s in the region $0 < X_s < 0.35$, where solvent-extraction techniques can be applied.¹³ In addition, because the fluoride ion is smaller than water and methanol, and has a negative charge, one might observe that the X_s value at the inflection point in the CN of Ce³⁺ is different from that of Ce(III) in CeF^{2+} in a mixed-solvent system.

The first objective of the present study was to examine the existence of an inflection point for the variation in $d_{\text{Ce-Cl}}$ in CeCl^{2+} , being a solvent-shared ion-pair in a mixed $\text{CH}_3\text{OH} + \text{H}_2\text{O}$ solution with 1.00 M ionic strength and of the inflection point for the variation in $(-\Delta g/RT + \Delta g_v/RT)$ of CeF^{2+} formation in a mixed $\text{CH}_3\text{OH} + \text{H}_2\text{O}$ solution with 0.10 M ionic strength. The second was to inspect whether

the X_s value at the inflection point in the CN of Ce^{3+} can be distinguished from that of Ce(III) in CeF^{2+} .

Experimental

The stability constant of CeF^{2+} , $\beta_{l(F)}$ (= $[CeF^{2+}]/\{[Ce^{3+}][F^{-}]\}$), in trace concentrations of Ce(III) in 0.10 M (H,Na)(F,ClO₄) solutions of mixed CH₃OH+H₂O solvents, and the stability constant of $CeCl^{2+}$, $\beta_{l(Cl)}$ (= $[CeCl^{2+}]/\{[Ce^{3+}][Cl^{-}]\}$), in trace concentrations of Ce(III) in 1.00 M (H,Na)(Cl,ClO₄) solutions of mixed CH₃OH+H₂O solvents were obtained by a back-extraction technique with ¹⁴¹Ce (from the Japan Atomic Research Institute). Other reagents and extraction procedures using bis(2-ethylhexyl) hydrogenphosphate (HDEHP)-toluene at 298.2 K were previously described. 5,12,13 Preliminary extraction experiments varying [(HDEHP)₂]_{org} in mixed CH₃OH+H₂O solutions at 0.10 and 1.00 ionic strengths showed that the distribution ratio of 141 Ce (D) had an approximate third-power dependence on $[(HDEHP)_2]_{org}$ (3.0±0.07) at $X_s = 0.00$, 0.10, 0.23, and 0.35, respectively). Determinations of the hydrogen- and fluoride-ion concentrations and calculations of $\beta_{1(F)}$ and $\beta_{1(Cl)}$ were performed as described for a system of NdF²⁺ and NdCl²⁺ in a mixed CH₃OH+H₂O solution. ^{12,13} NaCl was also assumed to be completely ionized under the experimental conditions.

Results and Discussion

Variation in $d_{\text{Ce-Cl}}$ against X_s . The values of $\beta_{1(\text{Cl})}$ of CeCl²⁺, a solvent-shared ion-pair, ^{12,14,15} in mixed CH₃OH + H₂O solutions are summarized in Table 1. The exchange rate of the solvated solvent molecules in the primary solvation sphere around Ce³⁺ is thought to be very high; ¹⁶ therefore, the shape of the primary solvation sphere of Ce³⁺ on the coordination of Cl⁻ can be regarded as being a sphere on the average. Münze^{7—10} and Choppin and Unrein¹¹ have used a Born-type equation to calculate the stability constants of Ln-(III) and An(III) in aqueous solutions. Suganuma et al. have also used the equation to calculate the distance of Ln³⁺–Cl⁻ ($d_{\text{Ln-Cl}}$) (Ln = Nd, Sm, Eu, and Tm) in mixed CH₃OH+ H₂O solutions. ^{6,12,17} The Ce³⁺–Cl⁻ distances ($d_{\text{Ce-Cl}}$) in the mixed CH₃OH+ H₂O solutions were also calculated using the following Born-type equation: ¹¹

$$RT\ln \beta_{1(\text{Cl})} = \frac{N_{\text{A}} \times e^2 \times Z_{\text{Ce}^{3+}} \times Z_{\text{Cl}^-}}{\varepsilon \times d_{\text{Ce}^{-\text{Cl}}}} + RT\nu \ln M_{\text{s}} - RT \sum \ln f, \quad (1)$$

Table 1. Stability Constants of $CeCl^{2+}$ and the Estimated Values of Ce^{3+} – Cl^- Distance (d_{Ce^-Cl}) at 298.2 K

Mole fraction of CH ₃ OH	$eta_{ m l(Cl)}$	$d_{ m Ce-Cl}$
in the bulk solution (X_s)		10 ² pm
0.000	0.92 ± 0.08	4.65±0.10
0.014	0.96 ± 0.06	4.66 ± 0.06
0.037	1.01 ± 0.15	4.71 ± 0.17
0.073	1.02 ± 0.07	4.85 ± 0.07
0.100	1.16 ± 0.07	4.84 ± 0.07
0.129	1.17 ± 0.08	4.94 ± 0.07
0.180	1.36 ± 0.17	4.99 ± 0.13
0.229	1.41 ± 0.09	5.15 ± 0.07
0.267	2.71 ± 0.19	4.71 ± 0.06
0.308	4.76 ± 0.26	4.43 ± 0.04
0.353	1.27±0.18	5.74±0.18

where $N_{\rm A}$ is Avogadro's constant, e is the elementary charge, $Z_{{\rm Ce}^{3+}}$ and $Z_{{\rm Cl}^{-}}$ are the ionic charges of ${\rm Ce}^{3+}$ and ${\rm Cl}^{-}$, ε is the dielectric constant in the secondary solvation sphere of ${\rm Ce}^{3+}$, $d_{{\rm Ce}-{\rm Cl}}$ is the distance between ${\rm Ce}^{3+}$ and ${\rm Cl}^{-}$, ν is -1, $M_{\rm s}$ is the total molarity of mixed solvent containing no electrolyte, and $\Sigma \ln f$ is expressed as the following equation:

$$\sum \ln f = \frac{-\Delta Z^2 \times A \times I^{1/2}}{1 + B \times a^{\circ} \times I^{1/2}} - C \times I^{1/2} - D \times I, \tag{2}$$

where $\Delta Z^2 = -6$, $A = (\varepsilon T)^{-3/2} \times 1.826 \times 10^6$, $B = 50.29 \times (\varepsilon T)^{-1/2} \times 10^8$, C = 0.75, D = -0.15, $a^\circ = 4.3 \times 10^{-8}$ cm, and I is the ionic strength. It was assumed that the values of ΔZ^2 , C, D, and a° , which had been utilized for the complexations of LnF²⁺ and AnF²⁺ in an aqueous medium of 1.0 M ionic strength by Choppin and Unrein, 11 are effective in the present system.

The estimated value of $d_{\text{Ce-Cl}}$ is affected by the values of C and D in Eq. 2. It is not to take into account any other influence (for example, the short-range interactions between ions and solvents, the variation in the viscosity with an increase in X_s , the formation of solvent-separated ion-pair between Ce^{3+} and ClO_4 , and so on), except for the dielectric constant of the solution in Eq. 1. Thus, the estimated $d_{\text{Ce-Cl}}$ will be somewhat uncertain.

Because it is difficult to observe the dielectric constant in the secondary solvation sphere of Ce^{3+} , and it is thought that the dielectric constant in the secondary solvation sphere is close to that in the bulk solution, ¹⁸ the dielectric constant of the mixed solvent ¹⁹ was adopted in the distance calculation. The values of d_{Ce-Cl} in the mixed CH_3OH+H_2O solutions are summarized in Table 1. They are also plotted in Fig. 1 against X_s . The distance in the aqueous solution was determined to be $(4.6_5\pm0.1_0)\times10^2$ pm. The value of d_{Ce-Cl} is intermediate between (1) the sum of ionic radii³ of Ce^{3+} and Cl^- (about 3.0×10^2 pm) and (2) the above value (about 3.0×10^2 pm) plus the diameter of a water molecule (about 2.8×10^2 pm), being regarded as a sphere (about 5.8×10^2 pm). Therefore, the calculated values of d_{Ce-Cl} in the aqueous and mixed

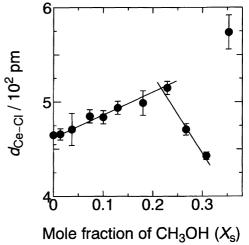


Fig. 1. The variation in the estimated values of Ce^{3+} – Cl^- distance (d_{Ce^-Cl}) at 298.2 K with X_s .

solutions do not indicate the state of "a contact ion-pai", but do indicate in the state of "a solvent-shared ion-pair". The calculated distance may show a somewhat smaller value than the real one, because the employed dielectric constant values are somewhat larger than those in the secondary solvation sphere.

The $d_{\text{Ce-Cl}}$ increases linearly along with an increase in X_{s} in the region $0.00 \le X_s < 0.23$, and decreases linearly with X_s in $0.23 \le X_s < 0.31$. It is thought that the point of Ce³⁺ on the S-shaped variation shown by Fourest et al.² lies between the points of La³⁺ and Pr³⁺ of hydration number 9; therefore, the CN of Ce³⁺ will not change immediately from 9 to 8 by coordination with a slight methanol molecule. If the CN of Ce^{3+} remains 9, even with increasing X_s , the coordination of a bulky methanol acts as (I) an elongating factor of $d_{\text{Ce-Cl}}$ along with an increase in the mean volume of the primary solvation sphere of Ce³⁺. On the other hand, a decrease in CN acts as (II) a lowering factor of d_{Ce-Cl} , being attributable to a decrease in the mean volume of the primary solvation sphere of Ce³⁺ and to a decrease in the mean ionic radius of Ce^{3+} . Thus, it is determined that the CN of Ce^{3+} varies from CN = 9 to a mixture CN = 9 and 8 in the vicinity of $X_s = 0.23$.

In large-angle X-ray diffraction measurements of 3 M $Ln(ClO_4)_3$ (Ln = Y, Er, Tb, Sm, and La) aqueous solutions, Johansson and Wakita¹⁵ showed a number of peaks due to ClO_4^- at a distance of more than 500 pm from Ln^{3+} (secondary hydration sphere). Johansson and Yokoyama¹⁴ also showed the presence of ClO_4^- in the secondary hydration sphere of Er^{3+} in a 1 M $Er(ClO_4)_3$ solution. If the value of X_s becomes still larger, the total solvent concentration in a mixed CH_3OH+H_2O solution of 1.00 M (H,Na)(Cl,ClO_4) will be considerably smaller than that of a H_2O solution. There is a strong presumption that ClO_4^- is able to invade the secondary solvation of Ce^{3+} at high X_s . In such cases, the obtained $\beta_{l(Cl)}$ does not have a significant value. It is probable that a large value of d_{Ce-Cl} at $X_s = 0.35$ is caused by an invasion of ClO_4^- into the secondary solvation of Ce^{3+} .

Value of ln \beta_{1(F)}. The values of ln $\beta_{1(F)}$ for CeF²⁺ summarized in Table 2 are plotted in Fig. 2 as a function of X_s . The thermodynamic treatments for the formation of CeF²⁺ in H₂O and mixed CH₃OH+H₂O solutions are expressed as followes:

$$\beta_{1(F)}(H_2O) = [CeF(H_2O)_n^{2+}] / \{ [Ce(H_2O)_l^{3+}] [F(H_2O)_m^{-}] \},$$
 (3)

$$\beta_{1(F)}(\text{mix}) = [\text{CeF}(\text{H}_2\text{O})_s(\text{CH}_3\text{OH})_t^{2+}] / \{ [\text{Ce}(\text{H}_2\text{O})_o(\text{CH}_3\text{OH})_p^{3+}][\text{F}(\text{H}_2\text{O})_q(\text{CH}_3\text{OH})_r^{-}] \}.$$
(4)

The relationship between $\ln \beta_{1(F)}(\text{mix})$ and $\ln \beta_{1(F)}(\text{H}_2\text{O})$ can be expressed by the following equation:^{4,20}

$$\begin{split} &\ln \beta_{1(F)}(\text{mix}) = \ln \beta_{1(F)}(\text{H}_2\text{O}) + \Delta G_{\text{tr}}(\text{F}^-)/RT - \Delta g/RT + \Delta g_{\text{v}}/RT, \\ & (5) \\ &\text{where } \Delta G_{\text{tr}}(\text{F}^-) = [\Delta G_{\text{F,solv}}(\text{mix}) - \Delta G_{\text{F,solv}}(\text{H}_2\text{O})], \quad -\Delta g = \\ &\{[\Delta G_{\text{Ce,solv}}(\text{mix}) - \Delta G_{\text{CeF,solv}}(\text{mix})] - [\Delta G_{\text{Ce,solv}}(\text{H}_2\text{O}) - \Delta G_{\text{CeF,solv}}(\text{H}_2\text{O})]\}, \text{ and } \Delta g_{\text{v}} = [-\Delta G_{\text{CeF}}(\text{vac,mix}) + \Delta G_{\text{CeF}}(\text{vac,H}_2\text{O})]. \end{split}$$
 The terms of $\Delta G_{\text{F,solv}}(\text{mix}), \Delta G_{\text{Ce,solv}}(\text{mix}), \Delta$

Table 2. Stability Constants and Thermodynamic Parameters of CeF^{2+} at 298.2 K

Mole fraction of CH ₃ OH	$\ln eta_{1(\mathrm{F})}$	$\Delta G_{\rm tr}({ m F}^-)/RT^{21)}$	$\Delta G/RT$
in the bulk solution (X_s)		kJ mol ⁻¹	$\overline{\text{kJ mol}^{-1}}$
0.000	7.35 ± 0.05	0.00	0.00
0.014	7.53 ± 0.05	0.10	0.08
0.037	7.70 ± 0.04	0.27	0.08
0.073	7.92 ± 0.02	0.53	0.04
0.101	8.18 ± 0.03	0.73	0.10
0.130	8.18 ± 0.03	0.94	-0.11
0.181	8.47 ± 0.03	1.31	-0.19
0.230	8.63 ± 0.03	1.66	-0.38
0.268	8.43 ± 0.04	1.94	-0.86
0.309	8.74 ± 0.02	2.24	-0.85
0.353	$9.28{\pm}0.01$	2.56	-0.63

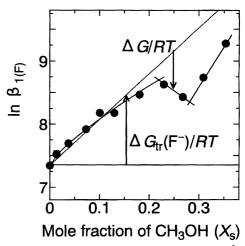


Fig. 2. The variations in $\ln \beta_{1(F)}$ (\bullet) of CeF^{2+} and $(\ln \beta_{1(F)}(\text{H}_2\text{O}) + \Delta G_{\text{tr}}(\text{F}^-)/RT^{21})$ at 298.2 K with X_s . The value of $\Delta G/RT (= -\Delta g/RT + \Delta g_v/RT)$ is $(-\ln \beta_{1(F)}(\text{H}_2\text{O}) + \ln \beta_{1(F)}(\text{mix}) - \Delta G_{\text{tr}}(\text{F}^-)/RT^{21})$.

 $\Delta G_{\text{CeF,solv}}(\text{mix})$, $\Delta G_{\text{F,solv}}(\text{H}_2\text{O})$, $\Delta G_{\text{Ce,solv}}(\text{H}_2\text{O})$, and $\Delta G_{\text{CeF,solv}}(\text{H}_2\text{O})$ are the solvation energies of F⁻, Ce³⁺, and CeF²⁺ in the mixed CH₃OH+H₂O and H₂O solutions, respectively. Both values of $\Delta G_{\text{CeF}}(\text{vac,mix})$ and $\Delta G_{\text{CeF}}(\text{vac,H}_2\text{O})$ are the Gibbs' free energies of formation in a vacuum at the interionic distances in H₂O and the mixed CH₃OH+H₂O solutions, respectively. The value of $(-\Delta g/RT + \Delta g_v/RT)$ in Fig. 2 has a smaller effect on the variation in $\ln \beta_1(\text{mix})$ than the effect based on $\Delta G_{\text{tr}}(\text{F}^-)/RT$, similar to the Eu(III) system.⁴

Variation in $(-\Delta g/RT + \Delta g_v/RT)$ with X_s . It is difficult to experimentally obtain the Gibbs' free energies of solvation for Ce³⁺ and CeF²⁺ in all solutions. Equation 5 shows that a difference in the $\ln \beta_{1(F)}$ value between H₂O and the mixed CH₃OH+H₂O solutions is governed by three factors: $\Delta G_{tr}(F^-)/RT$, $-\Delta g/RT$, and $\Delta g_v/RT$. Because the value of $\Delta G_{tr}(F^-)$ has been experimentally obtained by Hefter and McLay,²¹ the sum of $-\Delta g/RT$ and $\Delta g_v/RT$ (= $\Delta G/RT$), expressed by

$$\Delta G/RT = [\Delta G_{\text{Ce,solv}}(\text{mix}) - \Delta G_{\text{Ce,solv}}(\text{H}_2\text{O})]$$

$$-[\Delta G_{\text{CeF,solv}}(\text{mix}) - \Delta G_{\text{CeF,solv}}(\text{H}_2\text{O})]$$
$$-[\Delta G_{\text{CeF}}(\text{es, mix}) - \Delta G_{\text{CeF}}(\text{es, H}_2\text{O})], \tag{6}$$

can be calculated using Eq. 5 by adopting the values of $\ln \beta_1(\text{mix})$ and $\ln \beta_1(\text{H}_2\text{O})$. These values are listed in Table 2, and are shown in Fig. 2.

The variation in $\Delta G/RT$ in Fig. 2 shows a smooth curve for $0 \le X_s < 0.22$, a steep lowering for $0.22 < X_s \le 0.28$, and an increase for $0.28 < X_s < 0.36$ with increasing X_s . This has two inflection points in the neighborhood of $X_s = 0.22$ and 0.28. The value of the dielectric saturation ($\varepsilon_{\rm sat}$) around Ce^{3+} in a mixed $CH_3OH + H_2O$ solution is estimated to be $\varepsilon_{\rm sat} = 1.77$ by the square of the refractive index,²² because the refractive indices of water, methanol, and their mixture are nearly the same value (= 1.33).²³ The magnitude of this electrostatic interaction between Ce^{3+} and F^- should not vary with X_s when the ionic potential of Ce(III) for the CeF^{2+} complex is kept constant. Thus, the smooth curve for $0 \le X_s < 0.22$ is dependent on the variation in $(\Delta G_{Ce,solv}(mix) - \Delta G_{CeF,solv}(mix))$, because the variation in $\Delta G_{\rm tr}(F^-)/RT$ is approximately linear.²¹

The changing coordination numbers around Ce(III) of the solvated Ce³⁺ and the CeF²⁺ complex with increasing X_s should be accompanied by a change in the radius of Ce-(III). The electrostatic solvation energy of Ce³⁺ ($\Delta G_{\rm es,solv}$) for CN=9 and 8 in aqueous and methanol solutions was calculated using the equations of Latimer et al.²⁴ and of Tanaka and Ogata, ²⁵ and is shown in Table 3. It can be seen from the results in Table 3 that a decrease in CN for Ce³⁺ increases the absolute value of $\Delta G_{\rm Ce,solv}$ (mix).

Under these circumstances, the CN of Ce(III) for the CeF^{2+} complex remains 9 when the solvation number in the primary solvation sphere of Ce^{3+} starts to change from CN = 9 to a mixture of CN = 9 and 8 with increasing X_s ; an increase in $|\Delta G_{Ce,solv}(\text{mix})|$ for CN = 8, in comparison with that for CN = 9, acts as a large negative factor in the variation in $\ln \beta_1(\text{mix})$. It is reasonable that a steep lowering of $\Delta G/RT$ for $0.22 < X_s \le 0.28$ corresponds to the above-mentioned matter. The obtained maximum point in the neighborhood of $X_s = 0.22$ for the solvation number of Ce^{3+} from CN = 9 to a mixture of CN = 9 and 8 is in fair agreement with that based on the value of d_{Ce-CI} shown in Fig. 1.

It is difficult to obtain the values of $\Delta G_{\text{CeF,solv}}(\text{H}_2\text{O})$ and $\Delta G_{\text{CeF,solv}}(\text{mix})$. We thus assume that those can be expressed by $8/9 \times \Delta G_{\text{es,solv}}(\text{H}_2\text{O}) \times (1-\zeta)$ and $8/9 \times \Delta G_{\text{es,solv}}(\text{mix}) \times (1-\zeta')$ for CN=9 of Ce(III) and $7/8 \times \Delta G_{\text{es,solv}}(\text{mix}) \times (1-\zeta'')$ for CN=8. The terms of $(1-\zeta)$, $(1-\zeta')$, and $(1-\zeta'')$ are lowering factors for the

Table 3. The Calculated Electrostatic Solvation Energy of Ce^{3+} ($\Delta G_{es,solv}$) Based on the Equation of Latimer et al.²⁴

Coordination	$\Delta G_{ m es,solv}({ m water})$	$\Delta G_{ m es,solv}({ m methanol})$
number	$\overline{\text{kJ mol}^{-1}}$	kJ mol ⁻¹
CN=8	-3.30×10^{3}	-3.26×10^{3}
CN=9	-3.21×10^{3}	-3.17×10^3

solvation energies of CeF²⁺ due to a repulsion effect between the F⁻ and the oxygen atoms of the solvated molecules in the primary solvation sphere of CeF²⁺ in the aqueous and the mixed solutions of CN = 9 and 8 of Ce(III), respectively. The repulsion effect will increase with an increase in the solvated molecules around CeF²⁺. It is thus reasonable that the values of ζ and ζ' are larger than the ζ'' , and $\zeta = \zeta'$. When the CN of Ce(III) for the CeF²⁺ complex moves from 9 to 8, it is thought that the value of $-[7/8 \times \Delta G_{\rm es,solv}({\rm mix}) \times (1 \xi''$)-8/9× $\Delta G_{\rm es,solv}({\rm H_2O})\times(1-\xi)$] in the region of $X_{\rm s}<0.4$ is positive, because the Ln3+ is preferentially solvated by water in a CH₃OH+H₂O solution.²⁶ This indicates that the effect based on the variation in $\Delta G_{CeF,solv}(mix)$ acts as a positive factor in the variation of $\ln \beta_1(\text{mix})$. Furthermore, the ionic radius of Ce3+ will decrease when the CN of Ce(III) moves from 9 to 8. The distance between Ce3+ and Fshould become shorter. Thus, the term $-[\Delta G_{CeF}(es, mix) \Delta G_{\text{CeF}}(\text{es}, \text{H}_2\text{O})$] in Eq. 6 also acts as a large positive factor in the variation of $\ln \beta_1(\text{mix})$. It is reasonable that the inflection point in the vicinity of $X_s = 0.28$ corresponds to the variation in the CN for Ce(III) in the CeF^{2+} complex.

Conclusion. The variation in the coordination number (CN) of Ce^{3+} from 9 to a mixture of 9 and 8 occurs at lower X_s than that of Ce(III) of the CeF^{2+} complex in the mixed CH_3OH+H_2O solution. Those values are X_s = about 0.23 and about 0.27, respectively.

The authors are grateful to Professor Takashi Omori, Shizuoka University, for his valuable discussions.

References

- 1 H. Kanno and J. Hiraishi, J. Phys. Chem., 86, 1488 (1982).
- 2 B. Fourest, J. Duplesis, and F. David, *Radiochim. Acta*, 36, 191 (1984).
 - 3 R. D. Shannon, Acta Crystallogr., Sect. A, A32, 751 (1976).
- 4 H. Suganuma, M. Arisaka, I. Satoh, T. Omori, and G. R. Choppin, *Radiochim. Acta*, **83**, 153 (1998).
- 5 H. Suganuma, T. Katoh, A. Suzuki, K. Onuki, I. Satoh, T. Omori, and G. R. Choppin, *Radiochim. Acta*, **75**, 17 (1996).
- 6 H. Suganuma, M. Nakamura, I. Satoh, and T. Omori, J. Radioanal. Nucl. Chem., 224, 95 (1997).
 - 7 R. Münze, *Phys. Chem.*, **249**, 329 (1972).
 - 8 R. Münze, Phys. Chem., 252, 145 (1973).
 - 9 R. Münze, J. Inorg. Nucl. Chem., 34, 661 (1972).
 - 10 R. Münze, J. Inorg. Nucl. Chem., 34, 973 (1972).
- 11 G. R. Choppin and P. J. Unrein, "Transplutonium Elements," ed by W. Müller and R. Linder, North-Holland Publishing Company, Amsterdam (1976), p. 97.
- 12 H. Suganuma, M. Nakamura, T. Katoh, I. Satoh, and T. Omori, *J. Radioanal. Nucl. Chem.*, **223**, 167 (1997).
- 13 H. Suganuma, T. Katoh, S. Suzuki, I. Satoh, T. Omori, and G. R. Choppin, *Radiochim. Acta*, **75**, 23 (1996).
- 14 G. Johansson and H. Yokoyama, *Inorg. Chem.*, **29**, 2460 (1990).
 - 15 G. Johansson and H. Wakita, *Inorg. Chem.*, **24**, 3047 (1985).
 - 16 M. Eigen, Ber. Bunsenges. Phys. Chem., 67, 753 (1963).
- 17 H. Suganuma and M. Hori, *J. Radioanal. Nucl. Chem.*, **240**, 841 (1999).

- 18 J. Padova, J. Chem. Phys., 39, 1552 (1963).
- 19 E. P. Serjeant, "Potentiometry and Potentiometric Titration," Wiley, New York (1984), p. 411.
- 20 H. Suganuma, I. Satoh, T. Omori, and G. R. Choppin, *Radiochim. Acta*, 77, 211 (1997).
- 21 G. T. Hefter and P. J. McLay, Aust. J. Chem., 41, 1971 (1988).
 - 22 D. C. Grahame, J. Chem. Phys., 21, 1054 (1953).
- 23 "Landolt-Bömstein Tabellen," 5 Aufl., Springer-Verlag, Germany (1923).
- 24 W. M. Latimer, K. S. Pitzer, and C. M. Slanski, *J. Chem. Phys.*, 7, 108 (1939).
- 25 N. Tanaka and T. Ogata, *Inorg. Nucl. Chem. Lett.*, **10**, 511 (1974).
- 26 F. Tanaka, Y. Kawasaki, and S. Yamashita, J. Chem. Soc., Faraday Trans. 1, 84, 1083 (1988).